

have similar structure. Stochastic robustness analysis provides more useful information about the effects of parameter uncertainty, and it leads to a practical approach for designing robust control systems.

References

¹Gribble, J. J., "Comment on 'Robustness of Solutions to a Benchmark Control Problem,'" *Journal of Guidance, Control, and Dynamics*, Vol. 18, No. 6, 1995, p. 1467.

²Wie, B., and Bernstein, D. S., "A Benchmark Problem for Robust Control Design," *Proceedings of the 1990 American Control Conference* (San Diego, CA), IEEE Press, Piscataway, NJ, 1990, pp. 961, 962.

³Stengel, R. F., and Morrison, C. I., "Robustness of Solutions to a Benchmark Control Problem," *Journal of Guidance, Control, and Dynamics*, Vol. 15, No. 5, 1992, pp. 1060–1067.

⁴Ogata, K., *Modern Control Engineering*, Prentice-Hall, Englewood Cliffs, NJ, 1990.

⁵Ray, L. R., and Stengel, R. F., "Stochastic Robustness of Linear-Time-Invariant Control Systems," *IEEE Transactions on Automatic Control*, Vol. 36, No. 1, 1991, pp. 82–87.

⁶Marrison, C. I., and Stengel, R. F., "Gain and Phase Margins as Indicators of Robustness," *Proceedings of the 1992 IEEE Regional Control Conference*, Polytechnic University, New York, 1992, pp. 5–8.

⁷Marrison, C. I., and Stengel, R. F., "Stochastic Robustness Synthesis Applied to a Benchmark Control Problem," *International Journal of Robust and Nonlinear Control*, Vol. 5, No. 1, 1995, pp. 13–31.

⁸Marrison, C. I., and Stengel, R. F., "The Use of Random Search and Genetic Algorithms to Optimize Stochastic Robustness Functions," *Proceedings of the 1994 American Control Conference* (Baltimore, MD), IEEE Press, Piscataway, NJ, 1994, pp. 1484–1489; see also *IEEE Transactions on Automatic Control* (to be published).

⁹Marrison, C. I., and Stengel, R. F., "Synthesis of Robust Control Systems for a Hypersonic Aircraft," *Proceedings of the 33rd IEEE Conference on Decision and Control* (Orlando, FL), IEEE Press, Piscataway, NJ, 1994, pp. 3324–3329.

Errata

Flight Test of Radar Altimeter Enhancement for Terrain-Referenced Guidance

Richard E. Zelenka

NASA Ames Research Center, Moffett Field, California 94035

Zee Yee

U.S. Army Command/Control and Systems Integration Directorate, Fort Monmouth, New Jersey 07703

and

Andre Zirkler

Vitronics, Inc., Eatontown, New Jersey 07724

DURING the printing stage of this paper, Fig. 6b on page 706 was inadvertently dropped from the page. Here is the complete Fig. 6:

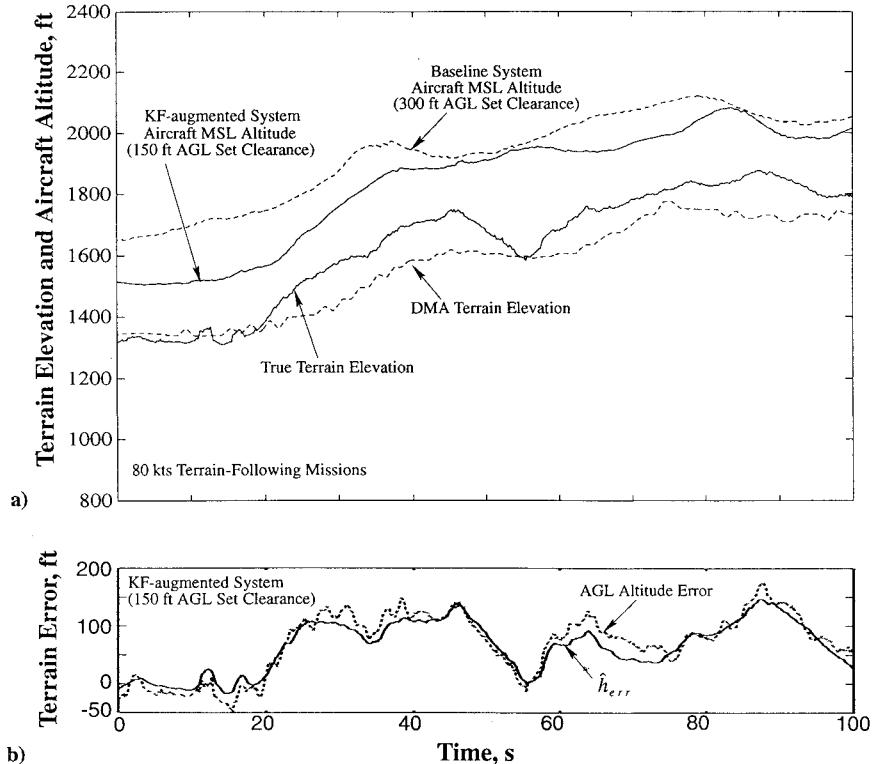


Fig. 6 Baseline and Kalman-filter (KF) augmented terrain-referenced guidance system during TF mission. Kalman-filter-augmented system allows for lower and more accurate flight above terrain than baseline system.